Modeling slope instability as shear rupture propagation in a saturated porous medium
نویسندگان
چکیده
When a region of intense shear in a slope is much thinner than other relevant geometric lengths, this shear failure may be approximated as localized slip like in faulting, with strength determined by frictional properties of the sediment and effective stress normal to the failure surface. Peak and residual frictional strengths of submarine sediments indicate critical slope angles well above those of most submarine slopes—in contradiction to abundant failures. Because deformation of sediments is governed by effective stress, processes affecting pore pressures are a means of strength reduction. However, common methods of examining slope stability neglect dynamically variable pore pressure during failure. We examine elastic-plastic models of the capped Drucker-Prager type and derive approximate equations governing pore pressure about a slip surface when the adjacent material may deform plastically. In the process we identify an elastic-plastic hydraulic diffusivity with an evolving permeability and plastic storage term analogous to the elastic term of traditional poroelasticity. We also examine their application to a dynamically propagating subsurface rupture and find indications of downslope directivity.
منابع مشابه
Rigidity and Irregularity Effect on Surface Wave Propagation in a Fluid Saturated Porous Layer
The propagation of surface waves in a fluid- saturated porous isotropic layer over a semi-infinite homogeneous elastic medium with an irregularity for free and rigid interfaces have been studied. The rectangular irregularity has been taken in the half-space. The dispersion equation for Love waves is derived by simple mathematical techniques followed by Fourier transformations. It can be seen t...
متن کاملA ug 2 00 1 Theory of sound propagation in superfluid - filled porous media
The theory of sound propagation in macroscopically isotropic and homogeneous porous media saturated with superfluid 4 He has been developed neglecting all damping processes. The case when the normal fluid component is locked inside a porous medium by viscous forces is investigated in detail. It is shown that in this case one shear wave and two longitudinal, fast and slow, waves exist. Fast wave...
متن کاملModeling high-frequency acoustics velocities in patchy and partially saturated porous rock using differential effective medium theory
Differential effective medium (DEM) theory is applied here to the problem of modeling physical properties of poroelastic media that are partially saturated with liquid. Typical fluid saturants are air and water, or gas and oil. If the liquid and gas saturants are homogeneously mixed, then we say the medium is partially saturated. If the liquid and gas saturants are poorly mixed, so each constit...
متن کاملNucleation of slip-weakening rupture instability in landslides by localized increase of pore pressure
We model landslide initiation as slip surface growth driven by local elevated pore pressure, with particular reference to submarine slides. Assuming an elastic medium and friction that weakens with slip, solutions exist in which the slip surface may dynamically grow, without further pore pressure increases, at a rate of the order of the sediment shear wave speed, a situation comparable to earth...
متن کاملTransference of SH-Waves in Fluid Saturated Porous Medium Sandwiched Between Heterogeneous Half-Spaces
A mathematical model is considered to investigate the behavior of horizontally polarized shear waves (SH-waves) in fluid saturated porous medium sandwiched between heterogeneous half-spaces. Heterogeneity in the upper half-space is due to linear variation of elastic parameters, whereas quadratic variation has been considered for lower half-space. The method of separation of variables and Whitta...
متن کامل